1.0 Features

- Phase-locked loop (PLL) device synthesizes output clock frequency from crystal oscillator or external reference clock
- On-chip tunable voltage-controlled crystal oscillator (VCXO) allows precise system frequency tuning
- Typically used for generation of MPEG-2 decoder clock
- 3.3V supply voltage

2.0 Description

The FS6128 is a monolithic CMOS clock generator IC designed to minimize cost and component count in digital video/audio systems.

At the core of the FS6128 is circuitry that implements a voltage-controlled crystal oscillator (VCXO) when an external resonator (nominally 13.5MHz) is attached. The VCXO allows device frequencies to be precisely adjusted for use in systems that have frequency matching requirements, such as digital satellite receivers.

- Very low phase noise PLL
- Use with "pullable" 14pF crystals no external padding capacitors required
- Small circuit board footprint (8-pin 0.150" SOIC)
- Custom frequency selections available contact your local AMIS Sales Representative for more information

A high-resolution phase-locked loop generates an output clock (CLK) through a post-divider. The CLK frequency is ratiometrically derived from the VCXO frequency. The locking of the CLK frequency to other system reference frequencies can eliminate unpredictable artifacts in video systems and reduce electromagnetic interference (EMI) due to frequency harmonic stacking.

Table 1: Crystal / Output Frequencies

Device	f _{XIN} (MHz)	CLK (MHz)
FS6128-04	13.500	27.000
	DII C	

Note: Contact AMIS for custom PLL frequencies.

Table 2: Pin Descriptions

Pin	Туре	Name	Description
1	Al	XIN	VCXO Feedback
2	Р	VDD	Power Supply (+3.3V)
3	Al	XTUNE	VCXO Tune
4	Р	VSS	Ground
5	DO	CLK	Clock Output
6	-	n/c	No Connection
7	DO	VSS	Ground
8	AO	XOUT	VCXO Drive

Key: AI = Analog Input; AO = Analog Output; DI = Digital Input; DI^U = Input With Internal Pull-Up; DI_D = Input With Internal Pull-Down; DIO = Digital Input/Output; DI-3 = Three-Level Digital Input, DO = Digital Output; P = Power/Ground; # = Active Low Pin

3.0 Functional Block Diagram

3.1 Voltage-Controlled Crystal Oscillator (VCXO)

The VCXO provides a tunable, low-jitter frequency reference for the rest of the FS6128 system components. Loading capacitance for the crystal is internal to the FS6128. No external components (other than the resonator itself) are required for operation of the VCXO.

Continuous fine-tuning of the VCXO frequency is accomplished by varying the voltage on the XTUNE pin. The value of this voltage controls the effective capacitance presented to the crystal. The actual amount that this load capacitance change will alter the oscillator frequency depends on the characteristics of the crystal as well as the oscillator circuit itself.

It is important that the crystal load capacitance is specified correctly to "center" the tuning range. See Table 5.

A simple formula to obtain the "pulling" capability of a crystal oscillator is:

$$\Delta f(ppm) = \frac{C_1 \times (C_{L2} - C_{L1}) \times 10^6}{2 \times (C_0 + C_{L2}) \times (C_0 + C_{L1})}$$

where:

 $\rm C_0$ = the shunt (or holder) capacitance of the crystal $\rm C_1$ = the motional capacitance of the crystal $\rm C_{L1}$ and $\rm C_{L2}$ = the two extremes (minimum and maximum) of the applied load capacitance presented by the FS6128.

EXAMPLE: A crystal with the following parameters is used: $C_1 = 0.025 pF$ and $C_0 = 6 pF$. Using the minimum and maximum $C_{L1} = 10 pF$, and $C_{L2} = 20 pF$, the tuning range (peak-to-peak) is:

$$\Delta f = \frac{0.025 \times (20 - 10) \times 10^6}{2 \times (6 + 20) \times (6 + 10)} = 300 \, ppm$$

3.2 Phase-Locked Loop (PLL)

The on-chip PLL is a standard frequency- and phaselocked loop architecture. The PLL multiplies the reference oscillator frequency to the desired output frequency by a ratio of integers. The frequency multiplication is exact with a zero synthesis error (unless otherwise specified).

4.0 Electrical Specifications

Table 3: Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
Supply Voltage (V _{SS} = ground)	V _{DD}	V _{SS} -0.5	7	V
Input Voltage, DC	VI	V _{SS} -0.5	V _{DD} +0.5	V
Output Voltage, DC	Vo	V _{SS} -0.5	V _{DD} +0.5	V
Input Clamp Current, DC ($V_I < 0$ or $V_I > V_{DD}$)	I _{IK}	-50	50	mA
Output Clamp Current, DC ($V_1 < 0$ or $V_1 > V_{DD}$)	Ι _{ΟΚ}	-50	50	mA
Storage Temperature Range (non-condensing)	Τ _S	-65	150	°C
Ambient Temperature Range, Under Bias	T _A	-55	125	°C
Junction Temperature	Τ _J		125	°C
Reflow Solder Profile				per IPC/JEDEC
				J-STD-020B
Input Static Discharge Voltage Protection (MIL-STD 883E, Method 3015.7)			2	kV

Note: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These conditions represent a stress rating only and functional operation of the device at these or any other conditions above the operational limits noted in this specification is not implied. Exposure to maximum rating conditions for extended conditions may affect device performance, functionality and reliability.

CAUTION: ELECTROSTATIC SENSITIVE DEVICE

Permanent damage resulting in a loss of functionality or performance may occur if this device is subjected to a highenergy electrostatic discharge.

Table 4: Operating Conditions

Parameter	Symbol	Conditions/Descriptions	Min	Тур.	Max	Units
Supply Voltage	V _{DD}	3.3V ± 10%	3.0	3.3	3.6	V
Ambient Operating Temperature Range	T _A	0			70	°C
Crystal Resonator Frequency	f _{XTAL}	Fundamental Mode	12	13.5	18	MHz

Table 5: DC Electrical Specifications

Parameter	Symbol	Conditions/Descriptions	Min	Тур.	Max	Units
Overall						
Supply Current, Dynamic, With Loaded Outputs	I _{DD}	f _{XTAL} = 13.5MHz; C _L = 10pF, V _{DD} = 3.6V		30		mA
Supply Current, Static	I _{DD}	$XIN = 0V, V_{DD} = 3.6V$		3		mA
Voltage-Controlled Crystal Oscillator (contact	factory fo	r approved crystal sources or other applic	ation as	sistance)		
Crystal Loading Capacitance at Center	C	Order crystal for this capacitance (parallel				
Tuning Voltage	CL(xtal)	load) at desired center frequency		14		pF
Crystal Resonator Motional Canacitance	C.	Specified motional capacitance of the				
Crystal Resolution Wottonal Capacitance	C_1	crystal will affect pullability (see text)		25		fF
XTUNE Effective Range			0		3	V
Synthesized Load Capacitance Min.	C _{L1}	@V(XTUNE)=minimum value		10		рF
Synthesized Load Capacitance Max.	C _{L2}	@V(XTUNE)=maximum value		20		pF
VCXO Tuning Range		$f_{XTAL} = 13.5MHz; C_{L(xtal)} = 14pF;$		300		nnm
		C _{1(xtal)} = 25fF (peak-to-peak)		500		ppm
VCXO Tuning Characteristic		Note: positive change of XTUNE =		150		nnm∕V
		positive change of VCXO frequency		100		pp//// •
Crystal Drive Level		$R_{XTAL}=20\Omega; C_{L}=20pF$		200		μW
Clock Output (CLK)						1
High-Level Output Source Current *	I _{OH}	$V_{0} = 2.0V$		-40		mA
Low-Level Output Sink Current *	I _{OL}	$V_{O} = 0.4V$		17		mA
Output Impodance *	z _{OH}	$V_{O} = 0.1 V_{DD}$; output driving high		25		0
	z _{OL}	$V_{O} = 0.1 V_{DD}$; output driving low		25		
Short Circuit Source Current *	I _{OSH}	$V_{O} = 0V$; shorted for 30s, max		-55		mA
Short Circuit Sink Current *	I _{OSL}	$V_{O} = 3.3V$; shorted for 30s, max		55		mA

Note: Unless otherwise stated V_{DD} = 3.3V ±10% no load on any output and ambient temperature range T_A = 0°C to 70°C. Parameters denoted with an asterisk (*) represent nominal characterization data

and are not production tested to any specific limits. Where given, MIN and MAX characterization data are $\pm 3\sigma$ from typical. Negative currents indicate current flows out of the device.

AM

Table 6: AC Timing Specifications

Parameter	Symbol	Conditions/Descriptions	Min	Тур.	Max	Units
Overall						
VCXO Stabilization Time *	t _{VCXOSTB}	From power valid		10		ms
PLL Stabilization Time *	t _{PLLSTB}	From VCXO stable		100		μs
Synthesis Error		(Unless otherwise noted in frequency table)		0		ppm
Clock Output (CLK)						
Duty Cycle *		Ratio of high pulse width (as measured from rising edge to next falling edge at VDD/2) to one clock period	45		55	%
Jitter, Period (peak-peak) *	$t_{j(\Delta P)}$	From rising edge to next rising edge at V _{DD} /2, CL =10pF 200 ps		200		ps
Jitter, Long Term (σy(τ) *	$t_{j(LT)}$	From 0-500µs at V _{DD} /2, CL = 10pF compared to ideal clock source		100		ps
Rise Time *	t _r	V_{DD} = 3.3V; V_{O} = 0.3V to 3.0V; C_{L} = 10pF		1.7		ns
Fall Time *	t _f	V_{DD} = 3.3V; V_{O} = 3.0V to 0.3V; C_{L} = 10pF		1.7		ns

Note: Unless otherwise stated, $V_{DD} = 3.3V \pm 10\%$, no load on any output, and ambient temperature range $T_A = 0$ °C to 70°C. Parameters denoted with an asterisk (*) represent nominal characterization data and are not production tested to any specific limits. Where given, MIN and MAX characterization data are $\pm 3\sigma$ from typical.

5.0 Package Information - For Both 'Green' and 'Non-Green'

		DIMEN	SIONS	
	INC	HES	MILLIM	IETERS
	MIN.	MAX.	MIN.	MAX.
A	0.061	0.068	1.55	1.73
A1	0.004	0.0098	0.102	0.249
A2	0.055	0.061	1.40	1.55
В	0.013	0.019	0.33	0.49
С	0.0075	0.0098	0.191	0.249
D	0.189	0.196	4.80	4.98
E	0.150	0.157	3.81	3.99
е	0.050	BSC	1.27	BSC
н	0.230	0.244	5.84	6.20
h	0.010	0.016	0.25	0.41
L	0.016	0.035	0.41	0.89
Θ	0°	8°	0°	8°

Table 7: 8-pin SOIC (0.150") Package Dimensions

Table 8: 8-pin SOIC (0.150") Package Characteristics

Parameter	Symbol	Conditions/Descriptions	Тур.	Units	
Thermal Impedance, Junction to Free-Air 8-pin 0.150" SOIC	Θ_{JA}	Air flow = 0 m/s	110	°C/W	
Load Industance Solf	I	Corner lead	2.0	~ L	
Lead inductance, sen	∟11	Center lead	1.6	1111	
Lead Inductance, Mutual	L ₁₂	Any lead to any adjacent lead	0.4	nH	
Lead Capacitance, Bulk	C ₁₁	Any lead to V _{SS}	0.27	pF	

6.0 Ordering Information

Table 9: Device Ordering Codes

Ordering Code	Device Number	Package Type	Operating Temperature Range	Shipping Configuration
11640-825	FS6128-04	8-pin (0.150") SOIC (Small Outline Package)	0°C to 70°C (Commercial)	Tape and Reel
11640-892	FS6128-04g	8-pin (0.150") SOIC (Small Outline Package) 'Green'or Lead-Free Packaging	0°C to 70°C (Commercial)	Tape and Reel

AMI Semiconductor

www.amis.com

© Copyright 2004 AMI Samiconductor - All rights reserved information furnished is believed to be accurate and realiable. However, AMI Samiconductor assumes no responsibility for errors or omissions in the information and for the constructore of use of tauk information. All rights reserved the right to change the information on trained hermatic at any time without notice. This information is provided "AS IS" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement of intellectual property. All tile and intellectual property rights including, without limitation, copyrights, trademarks, in and to this information and products are owned by AMI Semiconductor, and are protected by applicable laws. No license under any patent or other intellectual property rights including to implication, isopper or there.